
Implementing a Visualization of an

Industrial Production Cell Using Tcl/Tk1

Artur Brauer, Claus Lewerentz, Thomas Lindner

Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe Germany

email: {brauer, lewerentz, lindner}@fzi.de
Mai 1993

Abstract

In this work, an application of Tcl/Tk to the do-
main of process visualization is described. We
developed a simulation of an industrial produc-
tion cell for to evaluate and validate control soft-
ware for this (reactive) system. A major re-
quirement was to provide a simple integration of
the simulation with control programs.

In the first chapter the production cell and re-
quirements for the visualization are described.
Then the way the simulation was implemented
using Tcl/Tk and our experiences are reported.
This should be interesting for people who want to
use Tcl/Tk for building visualizations of reactive
or real time systems.

1. Problem

In the context of the German “Korso” Project
(Correct Software) a number of formal software
construction methodologies are developed. The
Forschungszentrum Informatik (FZI) proposed
the case study “production cell” to evaluate and
compare these approaches. At FZI we built a re-
alistic functional model of a small industrial pro-
duction cell, sized about 1 x 1 meter. A schematic
diagram of the cell is shown in figure 2. The task
of the case study, which is treated by several re-
search groups in Germany, is the development of

control software with various approaches, in or-
der to compare the approaches and to show the
usefulness of formal methods enforcing safety re-
quirements in industrial applications. As the part-
ners are distributed all over Germany it was
necessary to provide them with a facility to eval-
uate their developments. We decided to construct
a graphical software simulation of the production
cell that should be easy to build and easy to con-
nect with any control software.

We decided to use Tcl/Tk by the following
reasons: Firstly, Tcl/Tk enables one to program in
X on a higher level. Especially the canvas widget

helped us to speed up the application develop-
ment. In previous experiments with Tcl/Tk we
observed a much faster development compared
with standard X programming. The second rea-
son was that we had to provide an extremely sim-
ple coupling mechanism between the visualiza-
tion and any control software developed by the
project partners. A students work [3] had shown
us that this coupling is very simple using Tcl
mechanisms (see section 2).

2. Solution

The production cell is equipped with about a doz-
en of sensors, measuring for example the angle of
rotation of a robot, and about a dozen of actors,
for example a motor for closing or opening a

1. This work is sponsored by the German Ministry of Research and Technology (BMFT) as part of the compound project

„KORSO — Korrekte Software“.

press. For a complete understanding of the model
see [4]. This understanding is not needed to catch
the main points of the following presentation.

The first subsection describes the implemen-
tation of the visualization in Tcl/Tk, the second
subsection reports on the coupling between the
visualization and the control software.

2.1 Graphical Visualization Using Tcl/Tk

All objects making up the production cell are
drawn in a canvas widget of Tk. The definition
and manipulation of graphical objects is well
supported by the facilities of the canvas widget.
We used very simple geometric shapes such as
lines and rectangles, in order to achieve good per-
formance. Good performance is an important re-
quirement, because the real time behavior of the
production cell has to fit as well as possible to the
behavior of the hardware model. As the visual-
ization requires moving and rotating about a doz-
en of graphical objects, this performance is lost

when using complicated graphical representa-
tion.

The updating of the graphics is performed
within a main loop. There, the script looks for the
status of the actor switches and moves or rotates
the corresponding devices if necessary. The capa-
bilities of Tcl/Tk for moving objects simplified
the implementation. As the production cell pro-
cesses metal blanks the blanks must often be
moved together with other objects, e.g. the con-
veyor belt transporting them. This is easily
achieved in Tcl/Tk by packing them to a joint ob-
ject and applying the move command to the
whole group. The capabilities of Tcl/Tk of deal-
ing with what is in the foreground and what is in
the background of the canvas have proven to be
useful when dealing with overlapping.

The details of the implementation are de-
scribed in a technical report [5].

control panel
panel

(Tcl/Tk)

communication in ASCII via UNIX pipes

communication using Tcl send command

Figure 1 Communication architecture

may be replaced by: may be replaced by:

visualization
tksim

(Tcl/Tk)

control program
prog1
(Eiffel)

send utility
feedback_pipe

(Tcl/Tk)

hardware model
tkmodel

(Extended Tcl)
control program

prog2
(Pascal)

control program
prog2

(Haskell)

2.2 Coupling the Visualization and the

Control Software

We defined a simple ASCII communication pro-
tocol between the visualization and the control
program. A control program issues commands
provided by this protocol to stdout, and can thus
switche the actors of the production cell on or off.
With a special command also provided by the
protocol definition, the control program can ask
for the sensor status, which can then be read from
stdin.

We designed the visualization as a set of Tcl/
Tk procedures, such that to each actor command
there is a corresponding procedure. The status of
the sensor values is recorded internally and, if re-
quested for, is written to stdout. We added a sim-
ple Tcl-script called feedback_pipe. Its task is to
recognize commands issued from the control pro-
gram (read in by stdin), and to call the respective
procedures of the visualization using the Tcl-
built in send command. The very simple overall
architecture of the application is depicted in fig-
ure 1.

This coupling mechanism is flexible in two
ways: of course, one can easily replace prog1 by
another control program, even by a panel for
manual control (which was written using Tcl/Tk,
too). Note that this would not be so simple if we

had used UNIX named pipes. In addition, it is
also possible to replace the simulation by a sim-
pler Tcl-script which directly sends commands
and retrieves the state (via the serial port) from
the hardware model. In order to achieve this,
some small low-level C procedures were added
to Tcl, thus resulting in a Tcl extension.

3. Conclusion

The use of Tcl/Tk allowed for building a quite
complex animated graphical simulation in a rath-
er short time. The entire effort including the
learning of Tcl/Tk by one of the authors was
about 120 hours. The Tcl/Tk interpreter proved to
be a robust and reliable tool for this task. The
smooth embedding in the standard communica-
tion mechanism of UNIX (using character
streams and pipes) and the straight-forward ex-
tensibility of the Tcl interpreter by custom C
functions were very useful for the integration of
different parts of the system.

One major drawback of the current Tcl/Tk
version in this application was the degradation of
performance when relying extensively on proce-
dures to structure the application. Additionally,
powerful and suitable modularization and ab-
straction mechanisms for data structures as well

conveyor belt 1

conveyor belt 2

positioning

press

arm 2

arm 1robot

travelling

table

crane

Figure 1 Schematic diagram of the

production cell

Figure 2 Screen dump of the visual-

ization (together with panel)

as for functions would be very useful. We would
like to have object-oriented concepts for structur-
ing and reusing Tcl programs.

References

[1] J. K. Ousterhout, An Embeddable Com-
mand Language, Proceedings of the1990
Winter USENIX Conference.

[2] J. K. Ousterhout, An X11 Toolkit Based on
the Tcl Language, Proceedings of the 1991
Winter USENIX Conference.

[3] Kai Gutenkunst, Techniques for the
coupling of user interfaces and applications,
Forschungszentrum Informatik, Haid-und-
Neu-Straße 10-14, D-76131 Karlsruhe,
1992 (in German language).

[4] Thomas Lindner, Case Study Production
Cell: Task Definition, Technical Report,
Forschungszentrum Informatik, Haid-und-
Neu-Straße 10-14, D-76131 Karlsruhe.

[5] Artur Brauer, Claus Lewerentz, Thomas
Lindner, Implementing a visualization of an
Industrial Production Cell Using Tcl/Tk,
Technical Report, Forschungszentrum
Informatik, Haid-und-Neu-Straße 10-14, D-
76131 Karlsruhe, in preparation.

Appendix: How to Install and Use the

Visualization

Prerequisite: Have a running Tcl/Tk installation.

1. Get the file visualization.tar.Z from the FZI
ftp server gate.fzi.de (Internet 141.21.4.3) in
directory pub/korso/fzelle/simulation. Use
binary transfer mode.

2. Un-compress and un-tar the file. Check the
completeness of the installation by compar-
ing the contents of your current directory to
the list of files in the README file.

3. Change the files tksim, panel, and feedback_-

pipe by entering the correct path of your wish

interpreter in the first line.

4. Under UNIX, now just enter
tksim | panel | feedback_pipe.

The simulation will come up, together with a
control panel for hand steering, which was
also implemented using Tcl/Tk.

5. Press the DEMO button in order to get a
demonstration of a typical processing cycle
of the production cell.

Please report any errors to lindner@fzi.de. Also
comments are welcome.

